Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity
نویسندگان
چکیده
Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.
منابع مشابه
Extraordinarily high biomass benthic community on Southern Ocean seamounts
We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2-2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export ...
متن کاملSubmarine canyons: hotspots of benthic biomass and productivity in the deep sea.
Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristic...
متن کاملInfluence of the North Atlantic Oscillation on Mediterranean deep- sea shrimp landings
Recent studies have shown that the population dynamics of deep-sea organisms are affected by coupling between surface oceanic processes and energy, or trophic resources, reaching the sea floor. I analysed the correlation between the landings of a deep-sea shrimp (Aristeus antennatus) in Catalonia (NW Mediterranean) and the climatic indices of the annual North Atlantic Oscillation (NAO) and wint...
متن کاملHydrodynamics and water quality assessment of a coastal lagoon using environmental fluid dynamics code explorer modeling system
Ciénaga de Mallorquín is a coastal lagoon designated as a RAMSAR site due to its ecological regional and international importance. In this work, the environmental fluid dynamics code explorer modeling system was implemented to determine the spatio-temporal distribution of temperature, dissolved oxygen, chemical oxygen demand and nutrient levels, and assess the trophic status of Ciénaga de Mallo...
متن کاملImpacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting
Complex biogenic habitats formed by corals are important components of the megabenthos of seamounts, but their fragility makes them susceptible to damage by bottom trawling. Here we examine changes to stony corals and associated megabenthic assemblages on seamounts off Tasmania (Australia) with different histories of bottom-contact trawling by analysing 64 504 video frames (25 seamounts) and 70...
متن کامل